

Tetrahedron Letters 42 (2001) 1131-1133

TETRAHEDRON LETTERS

AlCl₃ as an efficient Lewis acid catalyst in water

Francesco Fringuelli,* Ferdinando Pizzo and Luigi Vaccaro

Dipartimento di Chimica, Università Perugia, Via Elce di Sotto, 8 06123-Perugia, Italy Received 15 September 2000; revised 16 November 2000; accepted 22 November 2000

Abstract—For the first time AlCl₃ has been conveniently employed as a Lewis acid in water and efficiently catalysed regio- and stereoselective azidolysis of α,β -epoxycarboxylic acids in water. © 2001 Elsevier Science Ltd. All rights reserved.

Lewis acid catalysed organic reactions in water are currently of great research interest.¹ Lanthanide triflates

are the most popular *water-tolerant* Lewis acids.² They catalyse many reactions^{1,3} and are reported to be stable

Table 1. Azidolysis in water at pH 4.0 of α , β -epoxycarboxylic acids catalysed by 1 mol% of AlCl₃

		COOH 0 H ₂ O, NaN ₃ , pH 4.0			COOH N ₃ ''OH COOH N ₃			
	{			΄ C-α	•	С-β		
Entry	Epoxyacid	Catalyst	Т	t	C ^a	C-α	C-β	Diol
		(1 mol%)	(°C)	(h)	(%)	(%)	(%)	
1	Соон	none	30	16	25	50	50	0
2	Me	AlCl ₃	30	3.5	> 99	< 1	> 99	0
3	COOH	none	65	24	82	44	56	0
4	<i>n</i> -Pr	AlCl ₃	65	1.5	> 99	< 1	> 99	0
5 6	COOH O Me Me	none AlCl ₃	30 30	3 0.6	13 > 99	< 1 < 1	> 99 > 99	0 0
7 8	Me O Et	none AlCl ₃	30 30	8 0.75	20 > 99	1 < 1	99 > 99	0 0
9 10	СООН	none AlCl ₃	30 30	0.25 0.25	2 > 99	1 < 1	99 > 99	0 0
10 11 12	Me O Ph	none AlCl ₃	65 65	20 0.25	> 99 > 99 > 99	1	99 97	0 3

^{*a*}Reaction conversion, C- α and C- β percentages were determined by GC analyses; C- β products were isolated in 93-95% yield and the structures agree with those reported in the literature.^{4b, 6}

Keywords: aluminum chloride; Lewis acid catalysts; water; azidolysis; green chemistry. * Corresponding author.

0040-4039/01/\$ - see front matter @ 2001 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(00)02164-X

in water,³ different from common metal salts (e.g. $AlCl_3$) that decompose readily in water and therefore are thought to be unusable in aqueous medium.³

AlCl₃ is a hard Lewis acid that coordinates hard basic centres like the oxygen atom of a carbonyl group and that of an epoxide, activating the reagent for a nucle-ophilic attack. Water is a hard base and therefore nucleophilic reactions catalysed by AlCl₃ are recommended to be carried out in organic solvents under anhydrous conditions.

Continuing our investigations⁴ on the use of water as reaction medium for organic reactions, we discovered that 1 mol% of AlCl₃ effectively catalysed the azidolysis of α , β -epoxycarboxylic acids in water at pH 4.0.

The results for a variety of α , β -epoxycarboxylic acids in the presence and in the absence of AlCl₃ are illustrated in Table 1. All the experiments were carried out at pH 4.0, held constant for the whole reaction time.

The reactions carried out in the presence of AlCl₃ are fast and completely regio- and diastereoselective. The β -azido- α -hydroxycarboxylic acid coming from the *anti* attack of the azido ion was the sole reaction product, which was isolated in excellent yields. For *trans*- α , β epoxy- α -methylcinnamic acid only, 3% diol was also detected (Table 1, entry 12).

The comparisons between the uncatalysed (without AlCl₃) and catalysed (with AlCl₃) reactions, all carried out under the same acidic conditions (see Table 1), show that in the absence of AlCl₃ the reactions are much slower, which indicates that under the pH conditions used, Brønsted catalysis is not significant. For example in the absence of AlCl₃ the azidolysis α,β epoxycyclohexanecarboxylic acid at pH 4.0 after 0.25 h gave only a 2% conversion (Table 1, entry 9) whereas, in the presence of AlCl₃, after the same reaction time the conversion was complete (Table 1, entry 10); and for α -methyl-*trans*- α , β -epoxy- β -phenylpropanoic acid the complete conversion was reached after 20 h in the absence of Lewis acid catalyst (Table 1, entry 11) and in only 15 min in the presence of AlCl₃ (Table 1, entry 12). Furthermore for *trans*- α , β -epoxypropanoic acid and *trans*- α , β -epoxyhexanoic acid the uncatalysed azidolysis is not regioselective (Table 1, entries 1 and 3), while by using 1 mol% of AlCl₃ only anti- β -azido- α hydroxycarboxylic acids were obtained.

AlCl₃ is not the active catalytic species. AlCl₃ dissociates in water very quickly and hydration occurs immediately with the formation of the corresponding aqua ion (Al(H₂O)₆³⁺; $pK_{1,1}$ =4.97–5.5^{5a-c}). At pH 4.0 it was estimated that about 5% hydrolysis of the aqua ion occurs and only monomeric species were present.⁵ Therefore we believe that the catalytic species is the aluminium aqua ion that coordinates the epoxycarboxylic acid and azide ion forming a reacting complex; the nucleophile is then regio- and stereoselectively transferred to the substrate β-carbon.

In a typical procedure, the α , β -epoxycarboxylic acid (1.0 mmol) and NaN₃ (5.0 mmol) were dissolved in water (2 mL) with stirring at a suitable temperature (see Table 1) in a thermostated flask equipped with a pH-stat apparatus. An 0.5 M AlCl₃ aqueous solution (20 μ L) was added and the pH adjusted to 4.0 value by adding 50% H₂SO₄ solution (150 μ L). The mixture was stirred for a suitable time (see Table 1) keeping the pH constant at 4.0 by a pH-stat (100 μ L of 50% H₂SO₄ aqueous solution). At the end, the mixture was cooled at 0°C, acidified to pH 2.0, extracted with diethyl ether and worked-up as usual to give the β -carbon adduct obtained in pure form in a 93–95% yield.

The mother liquor that remained after the work-up of the reaction can be re-used.⁷ We have found that the aqueous solutions from the azidolysis of *trans*- α , β -epoxyhexanoic acid and α , β -epoxycyclohexancarboxylic acid can be re-used three times without loss of reactivity and selectivity.⁷

The azidolysis of α,β -epoxycarboxylic acids and their ester derivatives has been widely investigated and many catalysts have been tested,^{4c,6} but a 1 mol% amount of catalyst has never been used. To our knowledge this is also the first report on the use of AlCl₃ in water to catalyse an organic reaction.

The possibility of using $AlCl_3$ in water opens new research strategies in organic synthesis, which are being studied in our laboratory.

Acknowledgements

The Ministero dell'Università e della Ricerca Scientifica e Tecnologica (MURST), the Consiglio Nazionale delle Ricerche (CNR) and the Università degli Studi di Perugia are thanked for financial support.

References

- (a) Li, C. J.; Chang, T. H. Organic Reactions in Aqueous Media; Wiley: New York, 1997; (b) Various authors Organic Synthesis in Water; Grieco, P. A., Ed.; Blackie Academic and Professional: London, 1998.
- (a) Kobayashi, S. Synlett **1994**, 689; (b) Kobayashi, S.; Nagayama, S.; Busujima, T. J. Am. Chem. Soc. **1998**, 120, 8287.
- 3. Xie, W.; Jin, Y.; Wang, P. G. Chemtech 1999, 23.
- (a) Fringuelli, F.; Piermatti, O.; Pizzo, F.; Vaccaro, L. J. Org. Chem. 1999, 64, 6094; (b) Fringuelli, F.; Pizzo, F.; Vaccaro, L. Synlett 2000, 311; (c) Fringuelli, F.; Pizzo, F.; Vaccaro, L. Synthesis 2000, 646.
- (a) Richens, D. T. The Chemistry of Aqua Ions; Wiley: New York, 1997; (b) Baes Jr., C. F.; Mesmer, R. E. The Hydrolysis of Cations; Wiley: New York, 1976; (c) Various authors, Coordination Chemistry of Aluminum; Robinson, G. H., Ed.; VCH: New York, 1993; (d) Brown, P. L.; Sylva, R. N.; Batley, G. E.; Ellis, J. J. Chem. Soc., Dalton Trans. 1985, 1967.

- (a) Chong, J. M.; Sharpless, K. B. J. Org. Chem. 1985, 50, 1560; (b) Saito, S.; Takahashi, N.; Ishikawa, T.; Moriwake, T. Tetrahedron Lett. 1991, 32, 667; (c) Azzena, F.; Crotti, P.; Favero, L.; Pineschi, M. Tetrahedron 1995, 48, 13409; (d) Legters, J.; Thijs, L.; Zwanenburg, B. Recl. Trav. Chim. Pays-Bas 1992, 111, 1; (e) Thijs, L.; Porskamp, J. J. M.; van Loon, A. A. W. M.; Derks, M. P. W.; Feenstra, R. W.; Legters, J.; Zwanenburg, B. Tetrahedron 1990, 46, 2611.
- 7. Powdered NaN₃ (5 mmol) was added to the remaining

mother liquor (ca. 2 mL) after extraction of β -azido- α -hydroxycarboxylic acid. Then α , β -epoxycarboxylic acid (1 mmol) was added and the pH of the reaction medium was adjusted to pH 4.0 by 50% H₂SO₄ aqueous solution (ca. 100 µL). The mixture was stirred at the temperature and for the time indicated in Table 1 and the pH was kept at the 4.0 value by using a pH-stat. The mixture was then worked-up as indicated in the typical procedure. The mother liquor was reused three times without loss of reactivity and selectivity.